In Vitro Reconstitution of the Functional Interplay between MCAK and EB3 at Microtubule Plus Ends

نویسندگان

  • Susana Montenegro Gouveia
  • Kris Leslie
  • Lukas C. Kapitein
  • Rubén M. Buey
  • Ilya Grigoriev
  • Michael Wagenbach
  • Ihor Smal
  • Erik Meijering
  • Casper C. Hoogenraad
  • Linda Wordeman
  • Michel O. Steinmetz
  • Anna Akhmanova
چکیده

The kinesin-13 family member mitotic centromere-associated kinesin (MCAK) is a potent microtubule depolymerase. Paradoxically, in cells it accumulates at the growing, rather than the shortening, microtubule plus ends. This plus-end tracking behavior requires the interaction between MCAK and members of the end-binding protein (EB) family, but the effect of EBs on the microtubule-destabilizing activity of MCAK and the functional significance of MCAK accumulation at the growing microtubule tips have so far remained elusive. Here, we dissect the functional interplay between MCAK and EB3 by reconstituting EB3-dependent MCAK activity on dynamic microtubules in vitro. Whereas MCAK alone efficiently blocks microtubule assembly, the addition of EB3 restores robust microtubule growth, an effect that is not dependent on the binding of MCAK to EB3. At the same time, EB3 targets MCAK to growing microtubule ends by increasing its association rate with microtubule tips, a process that requires direct interaction between the two proteins. This EB3-dependent microtubule plus-end accumulation does not affect the velocity of microtubule growth or shortening but enhances the capacity of MCAK to induce catastrophes. The combination of MCAK and EB3 thus promotes rapid switching between microtubule growth and shortening, which can be important for remodeling of the microtubule cytoskeleton.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TIP150 interacts with and targets MCAK at the microtubule plus ends

The microtubule (MT) cytoskeleton orchestrates the cellular plasticity and dynamics that underlie morphogenesis and cell division. Growing MT plus ends have emerged as dynamic regulatory machineries in which specialized proteins-called plus-end tracking proteins (+TIPs)-bind to and control the plus-end dynamics that are essential for cell division and migration. However, the molecular mechanism...

متن کامل

Differential functional interplay of TOGp/XMAP215 and the KinI kinesin MCAK during interphase and mitosis.

XMAP215/TOGp family members and KinI kinesins are conserved microtubule (MT)-regulatory proteins, and have been viewed as possessing prominent antagonistic stabilizing/destabilizing activities that must be balanced. Here, interdependencies between TOGp and the KinI kinesin MCAK were analyzed in human leukemia cells. A system was established that permits inducible overexpression in homogeneous c...

متن کامل

An EB1-Binding Motif Acts as a Microtubule Tip Localization Signal

Microtubules are filamentous polymers essential for cell viability. Microtubule plus-end tracking proteins (+TIPs) associate with growing microtubule plus ends and control microtubule dynamics and interactions with different cellular structures during cell division, migration, and morphogenesis. EB1 and its homologs are highly conserved proteins that play an important role in the targeting of +...

متن کامل

Full-length dimeric MCAK is a more efficient microtubule depolymerase than minimal domain monomeric MCAK.

MCAK belongs to the Kinesin-13 family, whose members depolymerize microtubules rather than translocate along them. We defined the minimal functional unit of MCAK as the catalytic domain plus the class specific neck (MD-MCAK), which is consistent with previous reports. We used steady-state ATPase kinetics, microtubule depolymerization assays, and microtubule.MCAK cosedimentation assays to compar...

متن کامل

High-resolution Time-lapse Imaging and Automated Analysis of Microtubule Dynamics in Living Human Umbilical Vein Endothelial Cells

The physiological process by which new vasculature forms from existing vasculature requires specific signaling events that trigger morphological changes within individual endothelial cells (ECs). These processes are critical for homeostatic maintenance such as wound healing, and are also crucial in promoting tumor growth and metastasis. EC morphology is defined by the organization of the cytosk...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2010